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Abstract. When they are studied as continuum media, granular materials and other soils and rocks exhibit a com-
plex behavior. Contrary to metals, their isotropic and deviatoric behavior are coupled. This implies some math-
ematical difficulties concerning boundary-value problems solved with constitutive equations modelling the salient
features of such geomaterials. One of the well-known consequences is that the so-called second-order work can
be negative long before theoretical failure occurs. Keeping this in mind, the starting point of this work is the
pioneering and illuminating work of Nova (1994), who proved that using an isotropic hardening elasto-plastic
model not obeying the normality rule, it is possible to exhibit either loss of uniqueness or loss of existence of
the solution of a boundary-value problem as soon as the second-order work is negative. Because the geomaterial
behavior is quite difficult to model, in practice many different constitutive equations are used. It is then impor-
tant to study the point raised by Nova for other constitutive equations. In this paper, his result is generalized
for any inelastic rate-independent constitutive equation. Similarly the link between localization and controllability
proved by Nova (1989) is extended to some extent to a general inelastic model.
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1. Introduction

The behavior of geomaterials (granular materials, soils, and rocks) has some specific proper-
ties which create certain mathematical difficulties when constitutive equations modelling this
behavior are used in a boundary-value problem. One of these properties can be experienced
in everyday life. Walking on a beach after the last wave has filled up all the pores of the sand
shows clearly that each footprint drains out the surrounding sand. This means that there is
an increase in the pore volume in the surrounding sand, even though it is likely that the mean
(effective) pressure increases. This phenomenon clearly shows that granular-material behav-
ior exhibits a coupling between the isotropic volume change and the deviatoric stress. This
behavior is rather different from that of metals. This complex behavior explains why so many
constitutive equations are elaborated in order to model granular materials and other geoma-
terials. These constitutive equations are now often based on the well-known framework of
classical plasticity (which here means isotropic hardening obeying a normality rule). Many of
these depart strongly from classical plasticity theory such as, for instance, multi-mechanism
plasticity models [1], bounding-surface plasticity models [2] hypoplasticty models – see [3] for
a review – or multi-laminate [4] and microplane [5] models.

These inelastic constitutive equations are used in numerical computations assuming implic-
itly the well-posedness of the underlying boundary-value problem. It is our opinion that there
is a need for knowledge about existence and uniqueness of solutions of boundary-value prob-
lems involving such general inelastic models. Except for classical elasto-plasticity constitutive
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equations (see [6]), for non-associative plasticity (see [7]) and for hypoplasticity (see [8]), there
is no simple and general (here general means independent of the geometry and the boundary
conditions of the problem) results about existence and uniqueness of solutions of boundary-
value problems involving inelastic constitutive equations. A common result can be deduced
from the results quoted above. Considering problems solved with the so-called small-strain
assumption, we observe that the positiveness of the second-order work (everywhere and for
any strain rate) ensures the uniqueness of the solution for classical elastoplastic [9] and hypo-
plastic [8] models.

On the other hand, it has been proved by Nova for isotropic hardening elastoplastic mod-
els [10] – see also [11] – that, if the second-order work can be negative, then it is possible to
construct a problem (starting from an homogeneous state) such that, for some specific bound-
ary conditions, the uniqueness of (in this case) the homogeneous solution is lost. This result
has been extended to particular cases of hypoplasticity by El Hassan [12]. More recently Nie-
munis gave a general proof for hypoplastic theories [13]. One of the objectives of this paper is
to generalize this result to a wide class of constitutive equations. It is necessary to emphasize
that, even if the constitutive equations are rather general, the problem solved is quite partic-
ular because it is related to homogeneous states only. This problem has to be related to what
is often called material instability [14,9]. It is necessary to quote here the work of Petryk con-
cerning problems similar to the one addressed here for the multi-mechanism plasticity theory.
Within this specific framework his work goes beyond the scope of this paper, since he takes
into account geometrical nonlinearities [15].

The second objective is to give a sufficient localization condition – i.e., a condition which
implies that all the equations of a Rice localization analysis [16] are fulfilled – for any rate-
independent materials and to prove that this condition implies the negativeness of the second-
order work.

The paper presentation is as follows. In the first part we present the problem under con-
sideration. In particular, the controllability as defined by Nova is recalled. Next we prove that
the loss of positiveness of the second-order work implies loss of controllability. The third part
deals with the shear-band analysis. A conjecture is explained in a concluding-remarks section.

The following notations are used: a tensor is denoted by an underlined symbol like σ , the
component of a tensor (or vector) is denoted by the name of the tensor (or vector) accom-
panied by lower indices. Other indices and among them upper indices have specific meanings
defined in the text. The summation convention with respect to repeated tensorial indices is
used.

2. The problem under consideration

2.1. The basic assumptions

We are dealing with inelastic materials not exhibiting viscous effect in the small-strain range.
The constitutive equation can thus be written in rate form as follows:

σ̇ =F(ε̇), (1)

where σ̇ is the stress rate, ε̇ the strain rate and F a tensorial function depending on the state
of the material. It is assumed first that F is invertible which means defining G as the inverse
of F so that:

ε̇ =G(σ̇ ). (2)
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If this assumption does not hold, it is clear that controllability is lost. Loss of invertibility
means: given σ̇ , either G(σ̇ ) does not exist or at least there are two different ε̇ such that Equa-
tion (1) holds. Consequently a boundary-value problem corresponding to the boundary condi-
tions compatible with the given value of σ̇ either has no homogeneous solution or has several
solutions. In both cases controllability defined hereafter is lost.

As we are studying non-viscous materials, F and G are homogeneous of the degree one
with respect to their respective arguments. We will add other assumptions when this is neces-
sary. The quantities σ̇ and ε̇ belong to the six-dimensional space of symmetric second-order
tensors. In the following it will be useful to define an orthonormal basis for this set which
means a set of six second-order tensors denoted in the following by ie such that

∀i, ‖ie‖=1, ∀i, j, i �= j, ie · j e=0, (3)

where · denotes the usual scalar product of two second-order tensors (for instance the scalar
product σ̇ · ε̇ = σ̇ ij ε̇ij defines the second-order work).

2.2. Controllability

In his paper Nova [10] defined controllability as follows. First he noticed that in some exper-
iments, like the classical triaxial tests, some components of the strain and the other compo-
nents of the stress are prescribed. He pointed out the practical importance of being able to
perform such a test, i.e., to get one (existence) and only one (uniqueness) response for such
a test. He noticed then, that in some tests like the undrained ones, a linear combination of
the classical strain components is prescribed. Generalizing this remark he defined a new set of
strain (and stress) variables related to the strain (or stress) components via a product with a
non-singular matrix the inverse of which is equal to its transpose (which means orthonormal
change of basis). He proceeded by defining controllability as the ability of a material (or a
model) to provide one and only one (existence and uniqueness) response to any loading path
for which some strain components (in this new basis) and the other stress components are
prescribed.

Finally, for a constitutive equation, controllability in other words is, existence and unique-
ness of the solution of the following problem. In a given orthonormal basis some components
of the strain rate and the other components of the stress rate are prescribed, and we try to
solve the corresponding boundary-value problem. If there exists one and only one solution for
the non-prescribed components (of the stress and the strain rates) satisfying the constitutive
equation (1) or (2), then the model is said to be controllable. Otherwise it is not controllable.

3. Consequences of the non-positiveness of the second-order work

3.1. The non-positiveness of the second-order work implies non-uniqueness

Rephrasing the problem as in the previous section allows us to prove that, if the sec-
ond-order work is equal to zero for some strain direction, then the constitutive equa-
tion is non-controllable. As already seen in Section 2.1, it is assumed that the constitutive
Equation (1) is invertible or else the model is clearly non-controllable. If the second-order
work can be equal to zero, there exists some strain rate denoted by ε̇0 �=0 such that:

if σ̇ 0 =F(ε̇0), then σ̇ 0 · ε̇0 =0. (4)
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This means that the second-order work is not strictly positive. Now we choose the orthonor-
mal basis such that:

1e = ε̇0

‖ ˙ε0‖
(5)

and

2e= σ̇ 0

‖σ̇ 0‖ . (6)

Denoting in the following by ia and ib the components of ε̇ and σ̇ , respectively, we have

ε̇ =1a 1e+2a 2e+3a 3e+4a 4e+5a 5e+6a 6e (7)

and

σ̇ =1b 1e+2b 2e+3b 3e+4b 4e+5b 5e+6b 6e. (8)

For instance, the components of ε̇0 are

ε̇0,0,0,0,0,0, (9)

defining ε̇0 and the components of σ̇ 0 are

0, σ̇ 0,0,0,0,0, (10)

defining σ̇ 0.
Controllability means that for some prescribed components ia, and the prescribed comple-

mentary components j b (which then define a mixed loading path), it is possible to find one
and only one set of the non-prescribed values of ia and j b, such that the corresponding strain
rate and stress rate meet the constitutive equation (1) or (2). Now let us consider the follow-
ing problem: 1b, 2a, 3a, 4a, 5a and 6a are prescribed equal to zero, that is,

1b= 2a = 3a = 4a = 5a = 6a =0. (11)

Clearly a solution is given by

1a =0, 2b=0, 3b=0, 4b=0, 5b=0, 6b=0. (12)

However, another solution is:

1a = ε̇0, 2b= σ̇ 0, 3b=0, 4b=0, 5b=0, 6b=0. (13)

Moreover, due to the positive homogeneity of degree one of the constitutive equation,
other solutions are

1a =λε̇0, 2b=λσ̇ 0, 3b=0, 4b=0, 5b=0, 6b=0, (14)

where λ is any positive number. For the same boundary conditions, the ones corresponding
to the prescribed values defined in Equation (11), there exists not only the solution given by
Equation (12), but also all the solutions given by Equation (14). Clearly, first uniqueness and
then controllability is lost.
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3.2. The non-positiveness of the second-order work implies either non-existence or
instability of the solutions

In the previous section, we proved that uniqueness is lost which is sufficient to prove loss
of controllability. In the current section, adding some assumptions about the differentiability
of the constitutive equation will allow us to prove moreover, either the loss of existence or
the fact that two closed prescribed inputs give two rather different solutions. This means in
the latter case discontinuity of the (mixed) response of the constitutive equation with respect
to the (mixed) input loading conditions. In some sense this property is more important. In
numerical computations, it is not so easy to detect non-uniqueness for a fully nonlinear prob-
lem like the one we are studying here; see, however, the algorithm proposed by Chambon [17].
On the contrary, it is easy to detect the non-existence or instability of the solution which is
often related to non-convergence when a full Newton-Raphson method is used to solve accu-
rately the nonlinear boundary-value problem.

3.2.1. New assumptions
We assume now that the functions F and G are continuous and differentiable, except in the
vicinity of the null tensor. This is not so strong a restriction. However, the flow theory of
plasticity does not meet this condition for a strain (or stress) rate direction corresponding to
neutral loading. On the other hand, if ε̇0 is not within this (very) restricted set of strain rates,
the following applies also to elasto-plasticity. Towards the end of Section 3.2.3, we will extend
the proof to constitutive equations involving several mechanisms (several means here two or
more than two), but for the beginning we assume the following. Constitutive Equation (1) or
(2) can be rewritten in the following form.

ib= iϕ(ja), (15)

where i, j ∈ {1,2,3,4,5,6} and iϕ are functions that are positively homogeneous of degree
one, continuous and differentiable, except for ja =0, ∀j . Let us write

ijA= ∂ iϕ

∂ ja
, (16)

which are only defined in the vicinity of a given strain direction.

3.2.2. Proof of the property
We are now looking at the constitutive equation in the vicinity of ε̇0.

A variation of 1a = ε̇0 means only a variation of the magnitude of ε̇0. Since the constit-
utive equation is positively homogeneous and since σ̇ 0 =F(ε̇0), a variation of the magnitude
of ε̇0 implies only a variation of the magnitude of σ̇ 0. This implies that:

i1A(ε̇0)=0 ∀i �=2 (17)

and

21A(ε̇0)= σ̇ 0

ε̇0
. (18)

Let us now look for a solution of the following problem where

1b=α 2a =0 3a =β 4a =5a =6a =0 (19)
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are prescribed. The parameters α and β are assumed to be small with respect to ε̇0. When
α =β =0, we have the following solutions

∀λ, 1a =λε̇0 2b=λσ̇ 0 3b=0 4b=0 5b=0 6b=0. (20)

Thus, if 0 �=α �=β �=0, and if we are looking for a solution close to a previous one, such that
λ �=0, then we can use the derivatives of the constitutive equation defined in (16) in the vicin-
ity of ε̇0 or in the vicinity of λε̇0 (Owing to positive homogeneity these derivatives are the
same). This implies that necessarily

1a =λε̇0 +γ (21)

with γ being of the same order as α and β. So finally this implies:

1b=α = 11Aγ + 13Aβ = 13Aβ. (22)

Then α=13Aβ, which contradicts the fact that α and β are chosen independently, and so gen-
erally a solution of our problem does not exist in the vicinity of the direction of ε̇0.

Let us summarize this result. There is no solution for the problem just defined in the vicin-
ity of the direction of ε̇0 ∀λ �=0. Thus, either there is no solution at all (non existence) or, if
there is a solution, it will not be in the vicinity of the direction of ε̇0. This means in this
case that for two close inputs given, respectively, by Equations (11) and (19) the correspond-
ing solutions are not close to each other, which concludes the proof.

3.2.3. Extension of the proof
Let us now relax the assumptions of the beginning of Section 3.2.1 in order to apply our
result to multi-mechanism plasticity. We assume that for some strain direction it is possible to
define a finite number (say n) of zones Zk, k ∈ 1, . . . , n in the strain space. When ε̇0 belongs
to the boundary of these zones and for every zone Zk, we can define

ijAk = ∂ iϕ

∂ ja
, (23)

which are all defined in the vicinity of ε̇0.
In this case, according to Section 3.2.2, if we are looking for a solution close to ε̇0, we get

α= 13Akβ for at least one k, which still contradicts the fact that α and β are chosen indepen-
dently. So it is possible to generalize the previous proof.

4. Shear-band analysis

4.1. The problem of shear banding

It is often claimed that shear banding corresponds to a zero value of the determinant of the
acoustic tensor. The problem is that such a tensor can be defined using a dynamic analysis
only for incrementally linear models. Generally speaking, a shear band can be generated if
the following conditions hold [16]. We consider the problem of an initially homogeneous solid
strained up to the current state. It is then submitted to a load rate on a straight loading path.
A solution of the resulting rate-equilibrium problem corresponds to an homogeneous strain
rate denoted by ε̇out. Another solution involving the existence of a shear band is considered.
It is assumed that the strain rate is equal to ε̇out outside a shear band and equal to

ε̇in = ε̇out +g ⊗n (24)
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inside the shear band. The vector n is normal to the shear band and g is some vector. Let σ̇ in

be the Cauchy stress rate with respect to a fixed frame inside the shear band and σ̇ out outside.
Along the boundaries of the band, equilibrium equations in a rate form can be written:

σ̇ in · n= σ̇ out · n. (25)

Moreover the constitutive Equation (1) or (2) has to be satisfied inside and outside the band.

4.2. General criterion and consequences

For any constitutive equation shear bands are possible if there exist some n and some g such
that

F(
1
2
(g ⊗n+n⊗g)) ·n=0, (26)

which means that

σ̇ ·n=0, (27)

for the stress rate corresponding to the strain rate 1
2 (g ⊗ n + n ⊗ g). In Equations (26) and

(27), 0 like n or g is a vector.
It is easy to prove that if it is assumed that ε̇out =0, which means physically negligible with

respect to g ⊗n, then Equation (26) implies Equation (24) and Equation (25). Then we have
obtained a sufficient localization criterion available for any constitutive equation. Moreover,
as pointed out by Nova [18] for elasto-plastic models and by Chambon [19] for hypoplastic
models, shear-band localization implies that the corresponding second-order work is equal to
zero, since by writing Equation (27) in component form, we have

σ̇ ij nj =0, (28)

which implies

σ̇ ij njgi =0, (29)

which is the second-order work written for the strain rate 1
2 (g ⊗n+n⊗g), since σ ij is sym-

metric.

5. Concluding remarks

In Section 3, we studied homogeneous problem. This means that it is possible to put on an
homogeneous sample, with boundary conditions corresponding to the prescribed components
(in the basis defined above) of the strain or of the stress. Physically, this implies only the use
of control devices and this can be actually encountered (for instance in undrained tests), as
pointed out by Nova [18]. But we have to keep in mind that this kind of boundary condi-
tions, as seen at the end of Section 2.2, linking different components, is not usually taken into
account in classical existence and uniqueness theorem.

However, usually, existence uniqueness and controllability are proved for very particular
constitutive equations. Indeed, the theorems proved here are almost independent of the con-
stitutive equation.

Since we have proved recently that, for materials not obeying the normality rule, the
second-order work can become negative strictly inside the limit surface [20], it is then pos-
sible to lose the well-posedness of the rate boundary-value problem far in advance of what is
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classically seen as rupture. Let us emphasize that it is possible to define normality in a gen-
eral manner without reference to a particular constitutive equation; see [20, Section 4.3.2]. So
the previous proposition is true irrespective of the constitutive equation.

Al these discussions are very important for geomaterials which are well known not to obey
normality rules, again without any reference to a particular law.

Clearly the loss of controllability of some homogeneous problem, when the second-order
work can be negative, does not imply that uniqueness (or existence) is lost if the second-order
work can be equal to zero or even negative in a subset of a studied domain. This statement
is sustained by the stability study of Dascalu et al. [21] which proved for a linear system that
the system can remain stable (which implies existence and uniqueness of the static system) if
a limited fault undergoes softening provided that the corresponding (negative) softening mod-
ulus has a small absolute value.

We have studied only a rate problem here. It would be desirable to deal with the more
interesting initial-boundary-value problem; however, the latter problem is more difficult to
tackle.

Finally let us conclude by stating a conjecture. For a reasonable constitutive equation
(continuous and smooth enough), when the second order is positive everywhere, and for any
strain rate, then, independently of the boundary conditions (with the same restrictions as for
classical elastic computations) and of the shape of the studied domain, the small-strain-rate
boundary-value problem is well-posed. If, on the contrary, for some points of the domain and
some strain directions, the second-order work is negative, it is possible that the corresponding
small-strain-rate boundary-value problem is ill-posed.
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